

Medida de los gases de efecto invernadero en suelos de cultivo

Autores

Fermín Martínez Zabalza

Nicolás Crespo Bonafonte

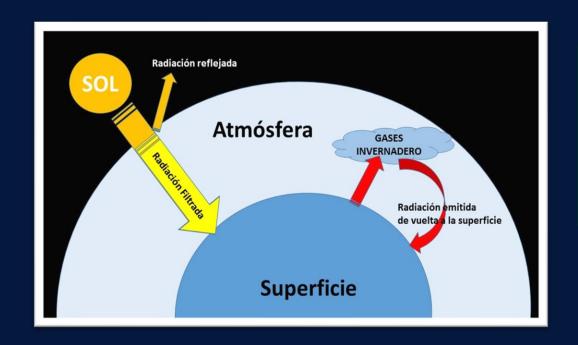
Paula Alonso Torres

Tutoras Internas

Verónica Pérez Lanes

Begoña Pueyo Hurtado

Tutoras UNAV


Esther Lasheras Adot

Carolina Santamaría Elola

1. Introducción

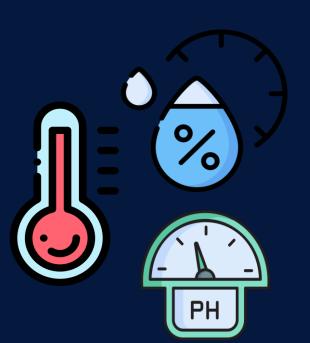
Gases de efecto invernadero

Absorben y emiten la radiación infrarroja del sol

Sus emisiones están creciendo exponencialmente

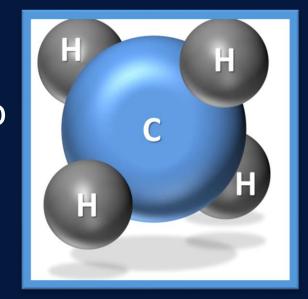
Uno de los principales emisores y receptores de GEI

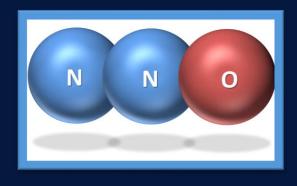
Suelos


1. Introducción

Fertilizantes — Afectan a las <u>emisiones</u> de gases de efecto invernadero

Emisión en los suelos




2. Antecedentes

Dióxido de carbono (CO₂)

> Metano (CH₄)

Óxido de dinitrógeno (N2O)

3. Hipótesis y objetivos

Hipótesis:

Los suelos con mayor tratamiento químico para lograr una mejor rentabilidad de cultivo son los mayores acumuladores y emisores de GEI.

Objetivo principal:

Estimar la tasa de emisión de cada GEI a partir de los resultados obtenidos de las mediciones en el cromatógrafo.

3. Objetivos específicos

- 1. Muestreo diferentes suelos.
- 2. Realización incubaciones en cámaras estancas.
- 3. Análisis de gases en un cromatógrafo.
- 4. Caracterización de los suelos.
- 5. Medición e interpretación de los resultados.

4. 1 Toma de muestras

- Tres zonas distintas.
- Tres muestras por cada zona.

Parque de los sentidos.

Zona de labranza de Noáin.

Huerto Luis Amigó.

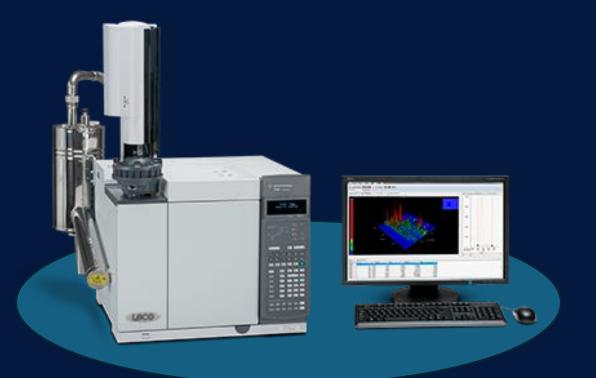
4. 2 Tratamiento de las muestras

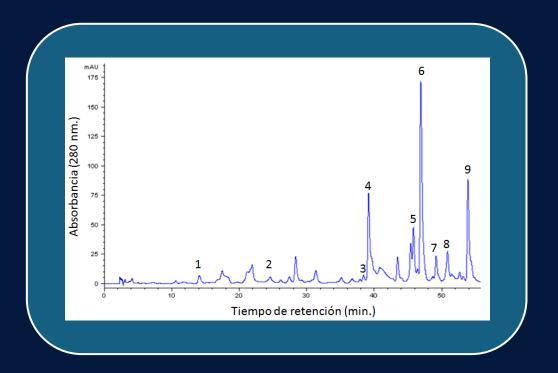
Pesar en el laboratorio.

Añadir el agua que se vaya evaporando.

4. 3 Extracción de gases de las muestras del suelo

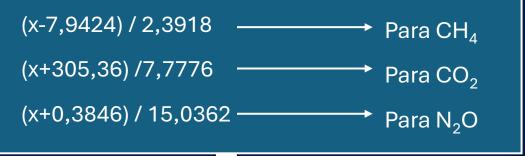
- 4 extracciones, en intervalos de 20 minutos.
- Durante 10 días.
- 50 ml de gas en viales de cristal.





4. 4 Análisis de las muestras en laboratorio

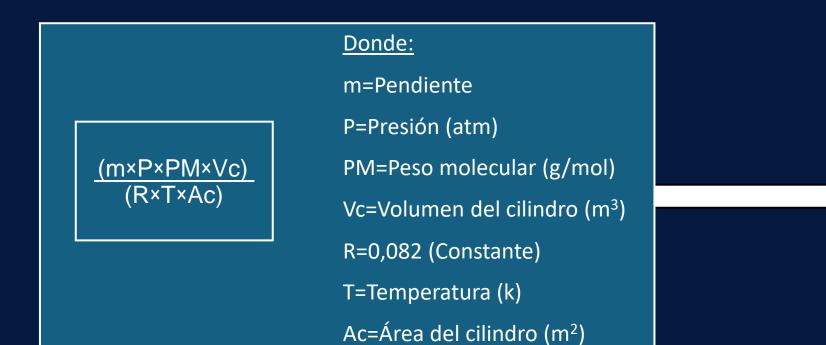
• Cromatógrafo de gases Agilent 7890.



4. 5 Análisis de los datos

Concentración

Tubo 6 Día 5									
500						٦ .			
400						-			
300									
200				05.45	0 400.5				
100				$y = -25,45$ $R^2 = 0$	8x + 432,5 ,9405				
o l									
C) 1	2	2	3 4	1 !	5			

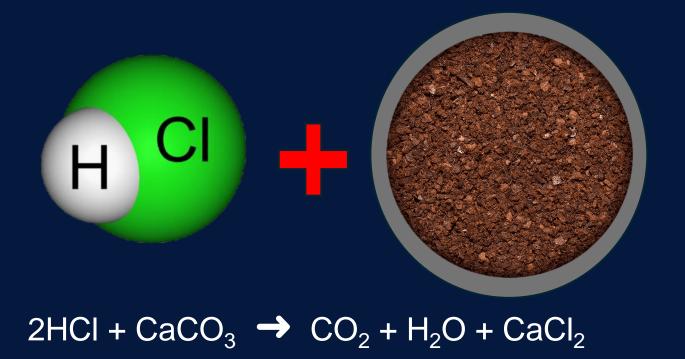

Extraccion es por tubo y día	Extracción 1	Extracción 2	Extracción 3	Extracción 4	
Tiempo de extracción	Minuto 0	Minuto 20	Minuto 40	Minuto 60	

4. 5 Análisis de los datos

Flujo

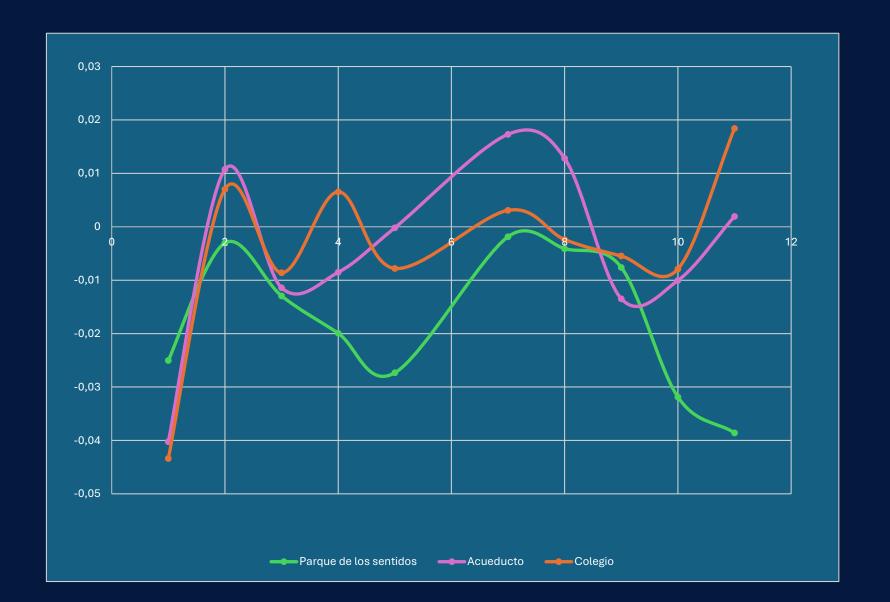
4. 6 Caracterización de los suelos

Carbono y nitrógeno.

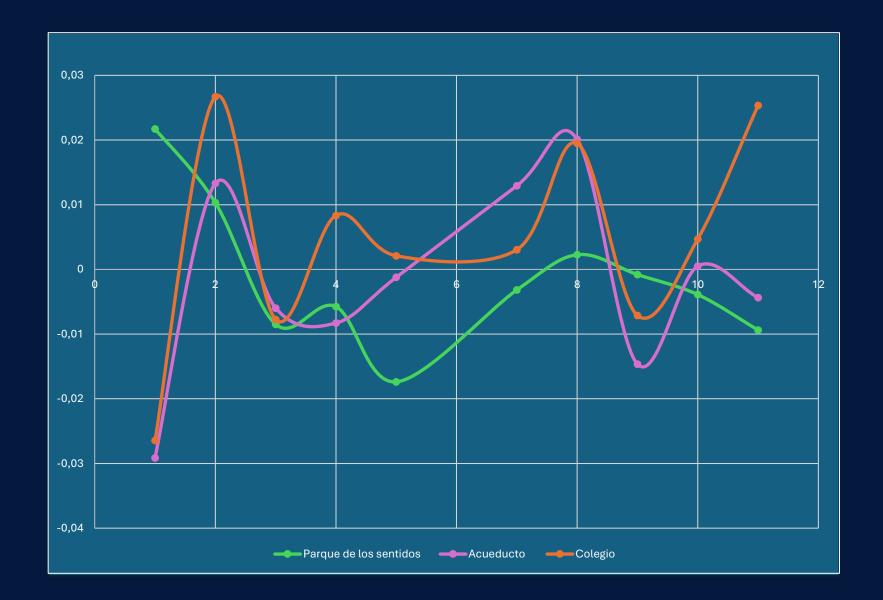


4. 6 Caracterización de los suelos

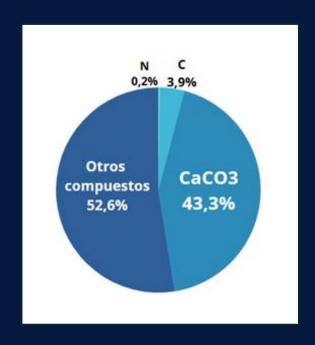
- Determinar niveles de carbonato.
- Calcímetro de Bernard.



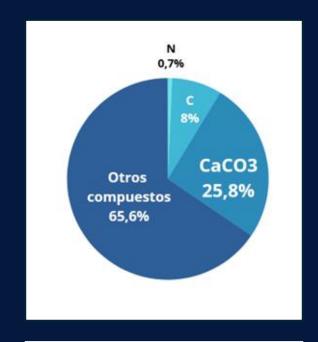
Parque sentidos Acueducto Colegio

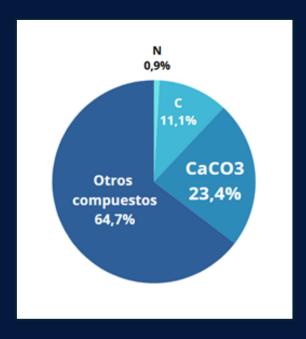


Parque sentidos Acueducto Colegio



Parque sentidos Acueducto Colegio

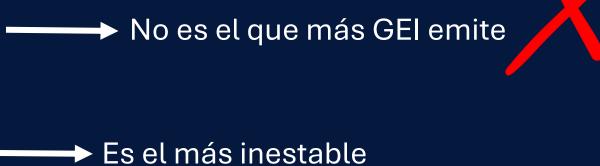



5. Resultados caracterización

Acueducto de Noáin

Huerta Luis Amigó

Parque de los sentidos



6. Conclusión

Suelo del acueducto de Noain

Mas perjudicial para el medio ambiente ——— No es el que más GEI emite

7. Bibliografía

Black, R. (2013). Las cicatrces del calentamiento global desde la revolución industrial. BBC News Mundo.

https://www.bbc.com/mundo/noticias/2013/09/130926_ciencia_historia_cambio_climatico_np (Consultada: 24/1/2024)

Chataut, G., Bhatta, B., Joshi, D., Subedi, K., & Kafle, K. (2023). *Greenhouse Gases Emission from Agricultural soil: A review. Journal of Agriculture and Food Research.*Geochemistry, 11, 100533. https://doi.org/10.1016/j.jafr.2023.100533 (Consultada: 19/11/2023)

European Environment Agency (2023). *Atmospheric greenhouse gas concentrations*. European Environment Agency. https://www.eea.europa.eu/en/analysis/indicators/atmospheric-greenhouse-gas-concentrations (Consultada: 27/11/2023)

Moran, M. (2023). *Cambio climático - desarrollo sostenible*. Desarrollo Sostenible. https://www.un.org/sustainabledevelopment/es/climate-change-2/ (Consultada: 6/12/2023)

National Geographic (2023) ¿ Qué es el calentamiento global? National Geographic. https://www.nationalgeographic.es/medio-ambiente/que-es-el-calentamiento-global (Consultada: 21/12/2023).

7. Bibliografía

Nuñez, C. (2023) ¿Qué son los gases de efecto invernadero y cuáles son Sus Efectos? National Geographic. https://www.nationalgeographic.es/medio-ambiente/gases-efecto-invernadero-que-son-hacen (Consultada: 22/12/2023).

Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F., & Erasmi, S. (2016). *Greenhouse gas emissions from soils—A review*. Geochemistry, 76(3), 327-352. https://doi.org/10.1016/j.chemer.2016.04.002 (Consultada:18/11/2023)

Pietro, B. (2023) Los 6 Principales gases de Efecto Invernadero (Y sus características químicas). MédicoPlus. https://medicoplus.com/ciencia/gases-efecto-invernadero (Consultada: 20/1/2024).

Pigna, F. (2017) *La revolución industrial*. El Historiador. https://elhistoriador.com.ar/la-revolucion-industrial/ (Consultada: 19/12/2023).

8. Agradecimientos

Entidades

Colegio Luis Amigo Universidad de Navarra Ayto. del Valle de Elorz

Tutoras UNAV

Esther Lasheras Adot Carolina Santamaría Elola

Tutoras Internas

Verónica Pérez Lanes Begoña Pueyo Hurtado

GRACIAS!